怎么样提高取光效率降热阻功率型LED封装技术?

2023-04-01 581

      高亮度LED的应用面不断扩大,首先进入特种照明的市场领域,并向普通照明市场迈进。由于LED芯片输入功率的不断提高,对这些功率型LED的封装技术提出了更高的要求。功率型LED封装技术主要应满足以下两点要求:一是封装结构要有高的取光效率,其二是热阻要尽可能低,这样才能保证功率LED的光电性能和可靠性。

       1635591798205896.jpg

半导体LED若要作为照明光源,常规产品的光通量与白炽灯和荧光灯等通用性光源相比,距离甚远。因此,LED要在照明领域发展,关键是要将其发光效率、光通量提高至现有照明光源的等级。功率型LED所用的外延材料采用MOCVD的外延生长技术和多量子阱结构,虽然其内量子效率还需进一步提高,但获得高发光通量的最大障碍仍是芯片的取光效率低。现有的功率型LED的设计采用了倒装焊新结构来提高芯片的取光效率,改善芯片的热特性,并通过增大芯片面积,加大工作电流来提高器件的光电转换效率,从而获得较高的发光通量。除了芯片外,器件的封装技术也举足轻重。关键的封装技术工艺有:

   散热技术

  传统的指示灯型LED封装结构,一般是用导电或非导电胶将芯片装在小尺寸的反射杯中或载片台上,由金丝完成器件的内外连接后用环氧树脂封装而成,其热阻高达250℃/W~300℃/W,新的功率型芯片若采用传统式的LED封装形式,将会因为散热不良而导致芯片结温迅速上升和环氧碳化变黄,从而造成器件的加速光衰直至失效,甚至因为迅速的热膨胀所产生的应力造成开路而失效。

  因此,对于大工作电流的功率型LED芯片,低热阻、散热良好及低应力的新的封装结构是功率型LED器件的技术关键。可采用低阻率、高导热性能的材料粘结芯片;在芯片下部加铜或铝质热沉,并采用半包封结构,加速散热;甚至设计二次散热装置,来降低器件的热阻。在器件的内部,填充透明度高的柔性硅橡胶,在硅橡胶承受的温度范围内(一般为-40℃~200℃),胶体不会因温度骤然变化而导致器件开路,也不会出现变黄现象。零件材料也应充分考虑其导热、散热特性,以获得良好的整体热特性。

   1636037028989626.png二次光学设计技术

  为提高器件的取光效率,设计外加的反射杯与多重光学透镜。

  功率型LED白光技术

  常见的实现白光的工艺方法有如下三种:

  (1)蓝色芯片上涂上YAG荧光粉,芯片的蓝色光激发荧光粉发出540nm~560nm的黄绿光,黄绿光与蓝色光合成白光。该方法制备相对简单,效率高,具有实用性。缺点是布胶量一致性较差、荧光粉易沉淀导致出光面均匀性差、色调一致性不好;色温偏高;显色性不够理想。

  (2)RGB三基色多个芯片或多个器件发光混色成白光,或者用蓝+黄绿色双芯片补色产生白光。只要散热得法,该方法产生的白光较前一种方法稳定,但驱动较复杂,另外还要考虑不同颜色芯片的不同光衰速度。

  (3)在紫外光芯片上涂RGB荧光粉,利用紫光激发荧光粉产生三基色光混色形成白光。由于目前的紫外光芯片和RGB荧光粉效率较低,仍未达到实用阶段。

  我们认为,照明用W级功率LED产品要实现产业化还必须解决如下技术问题:

  1、粉涂布量控制:LED芯片+荧光粉工艺采用的涂胶方法,通常是将荧光粉与胶混合后用分配器将其涂到芯片上。在操作过程中,由于载体胶的粘度是动态参数、荧光粉比重大于载体胶而产生沉淀以及分配器精度等因素的影响,此工艺荧光粉的涂布量均匀性的控制有难度,导致了白光颜色的不均匀。

  2、片光电参数配合:半导体工艺的特点,决定同种材料同一晶圆芯片之间都可能存在光学参数(如波长、光强)和电学(如正向电压)参数差异。RGB三基色芯片更是这样,对于白光色度参数影响很大。这是产业化必须要解决的关键技术之一。

  3、根据应用要求产生的光色度参数控制:不同用途的产品,对白光LED的色坐标、色温、显色性、光功率(或光强)和光的空间分布等要求不同。上述参数的控制涉及产品结构、工艺方法、材料等多方面因素的配合。在产业化生产中,对上述因素进行控制,得到符合应用要求、一致性好的产品十分重要。

   检测技术与标准

  随着W级功率芯片制造技术和白光LED工艺技术的发展,LED产品正逐步进入(特种)照明市场,显示或指示用的传统LED产品参数检测标准及测试方法已不能满足照明应用的需要。国内外的半导体设备仪器生产企业也纷纷推出各自的测试仪器,不同的仪器使用的测试原理、条件、标准存在一定的差异,增加了测试应用、产品性能比较工作的难度和问题复杂化。

  我国光学光电子行业协会光电子器件分会行业协会根据LED产品发展的需要,于2003年发布了“发光二极管测试方法(试行)”,该测试方法增加了对LED色度参数的规定。但LED要往照明业拓展,建立LED照明产品标准是产业规范化的重要手段。

   筛选技术与可靠性保证

  由于灯具外观的限制,照明用LED的装配空间密封且受到局限,密封且有限的空间不利于LED散热,这意味着照明LED的使用环境要劣于传统显示、指示用LED产品。另外,照明LED是处于大电流驱动下工作,这就对其提出更高的可靠性要求。在产业化生产中,针对不同的产品用途,进行适当的热老化、温度循环冲击、负载老化工艺筛选试验,剔除早期失效品,保证产品的可靠性很有必要。

   电防护技术

  由于GaN是宽禁带材料,电阻率较高,该类芯片在生产过程中因静电产生的感生电荷不易消失,累积到相当的程度,可以产生很高的静电电压。当超过材料的承受能力时,会发生击穿现象并放电。蓝宝石衬底的蓝色芯片其正负电极均位于芯片上面,间距很小;对于InGaN/AlGaN/GaN双异质结,InGaN活化薄层仅几十纳米,对静电的承受能力很小,极易被静电击穿,使器件失效。

  因此,在产业化生产中,静电的防范是否得当,直接影响到产品的成品率、可靠性和经济效益。静电的防范技术有如下几种:

  1、对生产、使用场所从人体、台、地、空间及产品传输、堆放等方面实施防范,手段有防静电服装、手套、手环、鞋、垫、盒、离子风扇、检测仪器等。

  2、芯片上设计静电保护线路。

  3、LED上装配保护器件。

  功率型LED封装技术现状

  功率型LED分为功率LED和W级功率LED两种。功率LED的输入功率小于1W(几十毫瓦功率LED除外);W级功率LED的输入功率等于或大于1W.

  国外功率型LED封装技术

  (1)功率LED

  最早有HP公司于20世纪90年代初推出“食人鱼”封装结构的LED,并于1994年推出改进型的“SnapLED”,有两种工作电流,分别为70mA和150mA,输入功率可达0.3W.接着OSRAM公司推出“PowerTOPLED”.之后一些公司推出多种功率LED的封装结构。这些结构的功率LED比原支架式封装的LED输入功率提高几倍,热阻降为几分之一。

  (2)W级功率LED

  W级功率LED是未来照明的核心部分,所以世界各大公司投入很大力量,对W级功率LED的封装技术进行研究开发。

  单芯片W级功率LED最早是由Lumileds公司于1998年推出的LUXEONLED,该封装结构的特点是采用热电分离的形式,将倒装芯片用硅载体直接焊接在热沉上,并采用反射杯、光学透镜和柔性透明胶等新结构和新材料,现可提供单芯片1W、3W和5W的大功率LED.OSRAM公司于2003年推出单芯片的“GoldenDragon”系列LED,其结构特点是热沉与金属线路板直接接触,具有很好的散热性能,而输入功率可达1W.

  多芯片组合封装的大功率LED,其结构和封装形式较多。美国UOE公司于2001年推出多芯片组合封装的Norlux系列LED,其结构是采用六角形铝板作为衬底。LaninaCeramics公司于2003年推出了采用公司独有的金属基板上低温烧结陶瓷(LTCC-M)技术封装的大功率LED阵列。松下公司于2003年推出由64只芯片组合封装的大功率白光LED.日亚公司于2003年推出号称是全世界最亮的白光LED,其光通量可达600lm,输出光束为1000lm时,耗电量为30W,最大输入功率为50W,提供展览的白光LED模块发光效率达33lm/W.

  有关多芯片组合的大功率LED,许多公司根据实际市场需求,不断开发出很多新结构封装的新产品,其开发研制的速度非常快。

   国内功率型LED封装技术

  国内LED封装产品的品种较齐全,据初步估计,全国LED封装厂超过200家,封装能力超过200亿只/年,封装的配套能力也很强。但是很多封装厂为私营企业,规模偏小。但我国台湾UEC公司(国联)采用金属键合(MetalBonding)技术封装的MB系列大功率LED的特点是,用Si代替GaAs衬底,散热好,并以金属黏结层作光反射层,提高光输出。

  对于大功率LED封装技术的研究开发,目前国家尚未正式支持投入,国内研究单位很少介入,封装企业投入研发的力度(人力和财力)还很不够,形成国内对封装技术的开发力量薄弱的局面,封装的技术水平与国外相比还有相当的差距。


Natural
light
医疗美容LED灯珠有哪些?

医疗美容LED灯珠的封装和组合波长医疗美容LED灯珠的封装和组合波长主要包括以下几种:1. 红光(620-700纳米):红光波长主要用于促进胶原蛋白的合成,增加皮肤弹性,改善皱纹和细纹,提亮肤色和淡化色斑。2. 蓝光(400-470纳米):蓝光波长主要用于杀菌消炎,对治疗痤疮和炎症性皮肤病有一定效果。3. 黄光(590-610纳米):...

查看更多

Copyright © 2020 云开平台app最新版本入口All rights reserved 粤ICP备2022115307号 网站地图 法律申明
XML 地图